Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract MotivationSingle-cell Hi-C (scHi-C) technologies have significantly advanced our understanding of the 3D genome organization. However, scHi-C data are often sparse and noisy, leading to substantial computational challenges in downstream analyses. ResultsIn this study, we introduce SHICEDO, a novel deep-learning model specifically designed to enhance scHi-C contact matrices by imputing missing or sparsely captured chromatin contacts through a generative adversarial framework. SHICEDO leverages the unique structural characteristics of scHi-C matrices to derive customized features that enable effective data enhancement. Additionally, the model incorporates a channel-wise attention mechanism to mitigate the over-smoothing issue commonly associated with scHi-C enhancement methods. Through simulations and real-data applications, we demonstrate that SHICEDO outperforms the state-of-the-art methods, achieving superior quantitative and qualitative results. Moreover, SHICEDO enhances key structural features in scHi-C data, thus enabling more precise delineation of chromatin structures such as A/B compartments, TAD-like domains, and chromatin loops. Availability and implementationSHICEDO is publicly available at https://github.com/wmalab/SHICEDO.more » « less
-
Abstract MotivationExtracellular miRNAs (exmiRs) and intracellular mRNAs both can serve as promising biomarkers and therapeutic targets for various diseases. However, exmiR expression data is often noisy, and obtaining intracellular mRNA expression data usually involves intrusive procedures. To gain valuable insights into disease mechanisms, it is thus essential to improve the quality of exmiR expression data and develop noninvasive methods for assessing intracellular mRNA expression. ResultsWe developed CrossPred, a deep-learning multi-encoder model for the cross-prediction of exmiRs and mRNAs. Utilizing contrastive learning, we created a shared embedding space to integrate exmiRs and mRNAs. This shared embedding was then used to predict intracellular mRNA expression from noisy exmiR data and to predict exmiR expression from intracellular mRNA data. We evaluated CrossPred on three types of cancers and assessed its effectiveness in predicting the expression levels of exmiRs and mRNAs. CrossPred outperformed the baseline encoder-decoder model, exmiR or mRNA-based models, and variational autoencoder models. Moreover, the integration of exmiR and mRNA data uncovered important exmiRs and mRNAs associated with cancer. Our study offers new insights into the bidirectional relationship between mRNAs and exmiRs. Availability and implementationThe datasets and tool are available at https://doi.org/10.5281/zenodo.13891508.more » « less
-
Abstract MotivationAdvances in whole-genome single-cell DNA sequencing (scDNA-seq) have led to the development of numerous methods for detecting copy number aberrations (CNAs), a key driver of genetic heterogeneity in cancer. While most of these methods are limited to the inference of total copy number, some recent approaches now infer allele-specific CNAs using innovative techniques for estimating allele-frequencies in low coverage scDNA-seq data. However, these existing allele-specific methods are limited in their segmentation strategies, a crucial step in the CNA detection pipeline. ResultsWe present SEACON (Single-cell Estimation of Allele-specific COpy Numbers), an allele-specific copy number profiler for scDNA-seq data. SEACON uses a Gaussian Mixture Model to identify latent copy number states and breakpoints between contiguous segments across cells, filters the segments for high-quality breakpoints using an ensemble technique, and adopts several strategies for tolerating noisy read-depth and allele frequency measurements. Using a wide array of both real and simulated datasets, we show that SEACON derives accurate copy numbers and surpasses existing approaches under numerous experimental conditions, and identify its strengths and weaknesses. Availability and implementationSEACON is implemented in Python and is freely available open-source from https://github.com/NabaviLab/SEACON and https://doi.org/10.5281/zenodo.12727008.more » « less
-
Abstract MotivationUnderstanding the rules that govern enhancer-driven transcription remains a central unsolved problem in genomics. Now with multiple massively parallel enhancer perturbation assays published, there are enough data that we can utilize to learn to predict enhancer–promoter (EP) relationships in a data-driven manner. ResultsWe applied machine learning to one of the largest enhancer perturbation studies integrated with transcription factor (TF) and histone modification ChIP-seq. The results uncovered a discrepancy in the prediction of genome-wide data compared to data from targeted experiments. Relative strength of contact was important for prediction, confirming the basic principle of EP regulation. Novel features such as the density of the enhancers/promoters in the genomic region was found to be important, highlighting our lack of understanding on how other elements in the region contribute to the regulation. Several TF peaks were identified that improved the prediction by identifying the negatives and reducing False Positives. In summary, integrating genomic assays with enhancer perturbation studies increased the accuracy of the model, and provided novel insights into the understanding of enhancer-driven transcription. Availability and implementationThe trained models, data, and the source code are available at http://doi.org/10.5281/zenodo.11290386 and https://github.com/HanLabUNLV/sleps.more » « less
-
Abstract MotivationModeling single-cell gene expression trends along cell pseudotime is a crucial analysis for exploring biological processes. Most existing methods rely on nonparametric regression models for their flexibility; however, nonparametric models often provide trends too complex to interpret. Other existing methods use interpretable but restrictive models. Since model interpretability and flexibility are both indispensable for understanding biological processes, the single-cell field needs a model that improves the interpretability and largely maintains the flexibility of nonparametric regression models. ResultsHere, we propose the single-cell generalized trend model (scGTM) for capturing a gene’s expression trend, which may be monotone, hill-shaped or valley-shaped, along cell pseudotime. The scGTM has three advantages: (i) it can capture non-monotonic trends that are easy to interpret, (ii) its parameters are biologically interpretable and trend informative, and (iii) it can flexibly accommodate common distributions for modeling gene expression counts. To tackle the complex optimization problems, we use the particle swarm optimization algorithm to find the constrained maximum likelihood estimates for the scGTM parameters. As an application, we analyze several single-cell gene expression datasets using the scGTM and show that scGTM can capture interpretable gene expression trends along cell pseudotime and reveal molecular insights underlying biological processes. Availability and implementationThe Python package scGTM is open-access and available at https://github.com/ElvisCuiHan/scGTM. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
Abstract MotivationThe rapid development of scRNA-seq technologies enables us to explore the transcriptome at the cell level on a large scale. Recently, various computational methods have been developed to analyze the scRNAseq data, such as clustering and visualization. However, current visualization methods, including t-SNE and UMAP, are challenged by the limited accuracy of rendering the geometric relationship of populations with distinct functional states. Most visualization methods are unsupervised, leaving out information from the clustering results or given labels. This leads to the inaccurate depiction of the distances between the bona fide functional states. In particular, UMAP and t-SNE are not optimal to preserve the global geometric structure. They may result in a contradiction that clusters with near distance in the embedded dimensions are in fact further away in the original dimensions. Besides, UMAP and t-SNE cannot track the variance of clusters. Through the embedding of t-SNE and UMAP, the variance of a cluster is not only associated with the true variance but also is proportional to the sample size. ResultsWe present supCPM, a robust supervised visualization method, which separates different clusters, preserves the global structure and tracks the cluster variance. Compared with six visualization methods using synthetic and real datasets, supCPM shows improved performance than other methods in preserving the global geometric structure and data variance. Overall, supCPM provides an enhanced visualization pipeline to assist the interpretation of functional transition and accurately depict population segregation. Availability and implementationThe R package and source code are available at https://zenodo.org/record/5975977#.YgqR1PXMJjM. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
Abstract MotivationSingle-cell RNA sequencing (scRNAseq) technologies allow for measurements of gene expression at a single-cell resolution. This provides researchers with a tremendous advantage for detecting heterogeneity, delineating cellular maps or identifying rare subpopulations. However, a critical complication remains: the low number of single-cell observations due to limitations by rarity of subpopulation, tissue degradation or cost. This absence of sufficient data may cause inaccuracy or irreproducibility of downstream analysis. In this work, we present Automated Cell-Type-informed Introspective Variational Autoencoder (ACTIVA): a novel framework for generating realistic synthetic data using a single-stream adversarial variational autoencoder conditioned with cell-type information. Within a single framework, ACTIVA can enlarge existing datasets and generate specific subpopulations on demand, as opposed to two separate models [such as single-cell GAN (scGAN) and conditional scGAN (cscGAN)]. Data generation and augmentation with ACTIVA can enhance scRNAseq pipelines and analysis, such as benchmarking new algorithms, studying the accuracy of classifiers and detecting marker genes. ACTIVA will facilitate analysis of smaller datasets, potentially reducing the number of patients and animals necessary in initial studies. ResultsWe train and evaluate models on multiple public scRNAseq datasets. In comparison to GAN-based models (scGAN and cscGAN), we demonstrate that ACTIVA generates cells that are more realistic and harder for classifiers to identify as synthetic which also have better pair-wise correlation between genes. Data augmentation with ACTIVA significantly improves classification of rare subtypes (more than 45% improvement compared with not augmenting and 4% better than cscGAN) all while reducing run-time by an order of magnitude in comparison to both models. Availability and implementationThe codes and datasets are hosted on Zenodo (https://doi.org/10.5281/zenodo.5879639). Tutorials are available at https://github.com/SindiLab/ACTIVA. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
An official website of the United States government
